The use of Six Sigma on the Pharmaceutical Industry

Orlando Lozada

Lean-Six Sigma Black Belt

Pfizer Puerto Rico
Pyramid of High Performance Business

Customer
VOC
(Defines Value)

Products
(Service / Goods)
(Business)

Suppliers – Inputs \(X \) – Process – Outputs \(Y \) – CTQ

Business needs to focus on CTQ

CTQ
(Defect Control & Reduction)

Six Sigma Tools

CTQ

DMAIC
DMAIC:
Universal Problem-Solving Methodology
5 Logically Linked Steps

Define
Measure
Analyze
Improve
Control
DMAIC Objective

Practical (Problem / Opportunity)

Statistical Problem (6-sigma tools)

Statistical Solution (6-sigma tools)

Practical Solution / Improvement
1. The Define Phase

- **Define**
 - Project Charter
 - SIPOC Analysis
 - Voice of the Customer

- **Measure**
 - Data Collection & Operational Def.
 - Data Measurement Tools: Funneling, Sampling, Minitab, Gage R&R, Patterns, Stratification, Process Capability

- **Analyze**
 - Data Analysis Tools: Cause & Effect Diagrams, Stratification, Hypothesis Testing, Regression Analysis, Design of Experiments

- **Improve**
 - Generating, Evaluating, & Selecting Solutions, FMEA, Pilots, Implementation Planning

- **Control**
 - Control Plan, Standardization, Monitoring, Key Learning's, Project Closure
2. Measure Phase

- Project Charter
- SIPOC Analysis
- Voice of the Customer

- **Data Collection & Operational Def.**
 - Data Measurement Tools: Funneling, Sampling, Minitab, Gage R&R, Patterns, Stratification, Process Capability

- Data Analysis Tools: Cause & Effect Diagrams, Stratification, Hypothesis Testing, Regression Analysis, Design of Experiments

- Generating, Evaluating, & Selecting Solutions, FMEA, Pilots, Implementation Planning

- Control Plan, Standardization, Monitoring, Key Learning's, Project Closure
Data Collection Plan

What is the data trend?

Does the data indicate any particular distribution?

Is there any outlier in the available data set?

<table>
<thead>
<tr>
<th>Data</th>
<th>Operational Definitions & Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>What</td>
<td>Measure Type, Unit of Measure</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INDUNIV research consortium
Gage R&R Analysis

Components of Variation

- % Contribution
- % Study Var
- % Tolerance

R Chart by Gage Operator

- Sample Range: 0.10
- UCL=0.0343
- R=0.0133
- LCL=0

Xbar Chart by Gage Operator

- Sample Mean: 56.70, 56.65, 56.60
- UCL=56.6499
- X=56.6363
- LCL=56.6227

Gage Weight (KG) by GAGE Drum No.

Gage Weight (KG) by Gage Operator

Gage Operator * GAGE Drum No. Interaction
Stratified Time Series Plot

Time Series Plot of % Yield

Day
- Fri
- Mon
- Thu
- Tue
- Wed

Date Produced

% Yield

1/31/05 3/4/05 4/8/05 5/13/05 6/17/05 7/22/05 8/26/05 9/30/05 11/4/05 12/9/05 1/13/06
Process Capability Report

Using Box-Cox Transformation With Lambda = 0.45

I Chart

UCL=0.2677
X̄=0.1722
LCL=0.0766

Moving Range Chart

UCL=0.1174
MR=0.0359
LCL=0

Last 25 Observations

Values

Within

Specs

Overall

Within

Overall

Transformed Capa Plot

Within

Cp *

Cpk 0.47

StDev 0.0318476

Pp *

Ppk 0.44

Cpm *

Capsule Filling Date: July to December 2008

Capability Histogram

Specifications

LSL* 0.127211

Normal Prob Plot

AD: 0.411, P: 0.339

StDev 0.0340961

inds

control
3. **Analyze Phase**

- **Define**
 - Project Charter
 - SIPOC Analysis
 - Voice of the Customer

- **Measure**
 - Data Collection & Operational Def.
 - Data Measurement Tools: Funneling, Sampling, Minitab, Gage R&R, Patterns, Stratification, Process Capability

- **Analyze**
 - Data Analysis Tools: Cause & Effect Diagrams, Stratification, Hypothesis Testing, Regression Analysis, Design of Experiments

- **Improve**
 - Generating, Evaluating, & Selecting Solutions, FMEA, Pilots, Implementation Planning

- **Control**
 - Control Plan, Standardization, Monitoring, Key Learning’s, Project Closure
Cause & Effect Diagram

Define → Measure → Analyze → Improve → Control

- Methods
 - Material
 - Machine
 - Manpower
 - Environment

Problem / Opportunity
Regression Analysis
Experimental Design Results
Surface plot of Response vs. Two Variables

Design-Expert® Software
Transformed Scale
\[\sqrt{\text{Response}} \]

- 5.2915
- 0

X1 = B: LOD
X2 = D: Vacuum

Actual Factors
A: Thickness = 0.080
C: PH = 5.15

Response

D: Vacuum
B: LOD
Hypothesis testing to demonstrate significance of Change

Two-sample T for Transformed data

<table>
<thead>
<tr>
<th>Period</th>
<th>N</th>
<th>Mean</th>
<th>StDev</th>
<th>SE Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before June_09</td>
<td>22</td>
<td>0.536</td>
<td>0.830</td>
<td>0.18</td>
</tr>
<tr>
<td>Post June_09</td>
<td>12</td>
<td>-0.655</td>
<td>0.939</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Difference = μ (Before June_09) - μ (Post June_09)

Estimate for difference: 1.191

95% CI for difference: (0.516, 1.866)

T-Test of difference = 0 (vs not =): T-Value = 3.68 P-Value = 0.001 DF = 20
4. Improve Phase

- Project Charter
- SIPOC Analysis
- Voice of the Customer

- Data Collection & Operational Def.
- Data Measurement Tools: Funneling, Sampling, Minitab, Gage R&R, Patterns, Stratification, Process Capability

- Data Analysis Tools: Cause & Effect Diagrams, Stratification, Hypothesis Testing, Regression Analysis, Design of Experiments

- Generating, Evaluating, & Selecting Solutions, FMEA, Pilots, Implementation Planning

- Control Plan, Standardization, Monitoring, Key Learning’s, Project Closure
FMEA Assessment for Identified Solutions

<table>
<thead>
<tr>
<th>Key Process Step or Input</th>
<th>Potential Failure Mode</th>
<th>Potential Failure Effects</th>
<th>S E V</th>
<th>Potential Causes</th>
<th>O C C</th>
<th>Current Controls</th>
<th>D E T</th>
<th>R P N</th>
<th>Actions Recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

- **What is the Process Step or Input?**
- **In what ways can the Process Step or Input fail?**
- **What is the impact on the Key Output Variables once it fails (customer or internal requirements)?**
- **How Severe is the effect to the customer?** 1=not severe, 10=extremely severe
- **What causes the Key Input to go wrong?**
- **How often does cause or FM occur?** 1=highly unlikely to ever occur, 10=we expect it to happen all the time
- **What are the existing controls and procedures that prevent either the Cause or the Failure Mode?**
- **How well can you detect the Cause or the Failure Mode?** 1=we have excellent controls, 10=we have no controls or extremely weak controls
- **Risk Priority Number (SEV x OCC x DET)**
- **What are the actions for reducing the occurrence of the cause, or improving detection?**
Pilots

- Find flaws in the solution
- Improve the solution before full-scale implementation
- Find out if you are getting the results you expected.
5. Control Phase

- Project Charter
- SIPOC Analysis
- Voice of the Customer

- Data Collection & Operational Def.
- Data Measurement Tools: Funneling, Sampling, Minitab, Gage R&R, Patterns, Stratification, Process Capability

- Data Analysis Tools: Cause & Effect Diagrams, Stratification, Hypothesis Testing, Regression Analysis, Design of Experiments

- Generating, Evaluating, & Selecting Solutions, FMEA, Pilots, Implementation Planning

- Control Plan, Standardization, Monitoring, Key Learning's, Project Closure
Control Phase Results

Before Implementation: Non-stable process

After Implementation: Stable Process
Six Sigma Projects Related to:

• Complaint Investigations
• Deviation Investigations
• Environmental Projects
• Laboratory Data / Specifications / Stability
• Lead Time Optimization
• Process Optimization
• Product Optimization
• Safety Assessments & Investigations
Summary

• 6-Sigma tools are embraced by a 5 logically linked steps, DMAIC, which enables tools understanding and proper use

• Each year hundreds of projects are completed using 6-sigma tools

• These projects add significant benefits to the business performance; related to quality, safety, process performance and other
End